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Amidst the tumult of the first quarter of 2023, marked by macroeconomic headwinds, banking
crises, and a sluggish biotech economy, one topic with its hype and truths has captured the
imagination of the masses more than any other: Artificial intelligence (AI). AI and its subset of
machine learning (ML) technologies have exploded onto the scene thanks to the emergence of
public-facing tools like ChatGPT and DALLE. Large-language models (e.g. GPT-4) and
generative image models have been in the works for many years but have now reached
sufficient maturity that their future ubiquity seems all but assured. These and other algorithmic
advances, converging with advances in biomedical data generation and aggregation and driving
regulatory frameworks for technology adoption, have set the stage for a wave of healthcare
innovation. Herein we argue, perhaps counter to mass concerns, this innovation will help to
make healthcare more human-centric.

One of the notable developments in the regulatory space happened in late December when the
US president signed legislation that would allow the FDA to promote drugs and biologics to
human clinical trials with or without animal testing, replacing the antiquated regulation from
1938, which required safety and efficacy testing in animals. This is a clear sign that legislators
and regulators are recognizing and anticipating that there will be better ways to show efficacy
and safety before initial human dosing. One of those ways certainly will be through the use of
ML models trained on human data.

In addition to this groundbreaking legislation, recent and emerging advances in Machine
Learning (ML) broadly will steer healthcare to be more human-centric through combining
automation, ML, and human (and human-derived) data. We are seeing more and more, human
data and human-derived assay systems in combination with ML driving innovation in drug target
identification (ID), translational research, biomarkers discovery, and clinical development.

Target ID and Phenotypic-screening

Starting with the Human Genome Project and the publication of the first rough draft of the
human genome in 2000, biological data of all modalities has exploded, and the invention of new
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medicines has largely moved from phenotype-based to target-based drug discovery.
Target-based drug discovery requires, however, the collection of different types of biological
data to develop a target ID hypothesis. Human biology and disease are multiscale, multimodal
subjects of study that require many data types and data collection mechanisms.

Making sense of these data requires one to harmonize and organize them, allowing for
analytical study and target discovery. One approach is via the construction of knowledge graphs
from the data. Knowledge graphs are graphs where nodes represent entities, for example
genes, proteins, drugs, disease, etc., and edges represent relationships, such as verbs (e.g.
induces, inhibits, reduces, etc.). Biological knowledge graphs (BKGs) capture biological
pathways, and the relation of those pathways to, e.g., cellular phenotypes, drug effects, disease
onset/progression, and/or clinical outcomes, to name a few of many possible types of
relationships. The set of relations captured by BKGs recently has been referred to as the
Interactome.

While BKGs have been used for some time in interactome research the analytical techniques
have largely focused on local graph neighborhoods for simplicity and ease of understanding.
There is, however, no reason to believe that “closeness” is a requirement for effect. In fact, it
has been demonstrated that at least 44% of protein-protein pairs that affect the same biological
function are very distant from each other in typical BKG (Ruiz, Zitnik, & Leskovec, 2021). Now
with graph-based ML, one can take full advantage of the global structure and topology of BKGs.
Most graph-based ML approaches take the continuous neighborhood of the node and encode it
as a fixed-size latent vector representing the relationship of the node to the entire graph in a
lower dimensional space.

Such graph-based ML algorithms applied to BKGs have many proven and potential uses. Drug
repurposing has seen notable success using these methods. Herein we focus on the use case
of target ID. Examples of the use of graph-based ML for target ID go back nearly a decade to
Himmelstein’s work on Hetionet (Himmelstein & Baranzini, 2015). More recently, companies like
AAIH member BenevolentAI, using their Rosalind graph-based ML algorithm, uncovered
potential novel therapeutic targets for rheumatoid arthritis. Because gene-disease and
protein-disease relationships cannot be protected via patent, the current literature largely
reflects well-constructed retrospective analyses and yet publicly unproven hypotheses in the
target ID space. But one can point to the success of using graph-based ML and BKGs for
repurposing and off-target toxicity prediction showing that these methods produce actionable
insights.

While BKGs have been used to make sense of the biological data collected in the age of
target-based drug discovery, the development of more advanced cellular assay technology and
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ML applied to cellular data has revitalized phenotypic drug discovery efforts since 2014. These
methods can be used for both target validation and initial hit and tool compound development. A
method of particular interest is cellular microscopy, typically referred to as High Content
Screening (HCS) when implemented in drug program initiation. HCS may be applied to healthy
and diseased cells, whether induced using tools like CRISPR/Cas9 or naturally occurring via
tools like iPSC-derived cells. Two primary problems typically associated with cellular
phenotyping are segmentation (identifying the individual cells) and phenotype embedding
(characterizing the state of the cell(s)), both of which have seen large improvements in recent
years due to the use of convolutional layers within deep learning models. In addition, whole
images have been use in recent work on mechanism of action (MoA) prediction and compound
annotation (Janssens, Zhang, Kauffmann, de Weck, & Durand, 2021).

Segmentation is the task of taking cellular images and identifying and discriminating between
entities, such as, cells, nuclei, mitochondria, etc. When cells are well separated, such as in
monodispersed assays, segmentation can be easily achieved. However, in many cases
researchers want to perform tissue slice imaging and other experiments where cells are
overlapping and connected to one another. This makes segmentation very difficult. Most
segmentation algorithms are designed and trained on images from one assay source because
previous techniques were very sensitive and brittle in relation to changes in assay set-up. More
recently, algorithms such as CellPose (Stringer, Wang, Michaelos, & Pachitariu, 2021) have
used deep neural network architectures (in this case, U-Net architecture) and trained on large
sets of diverse cellular images covering different imagers and different cell types.

Cellular phenotyping is the process of developing a representation of the physiological state or
status of a cell, generally as a high-dimensional vector, which then allows for tasks, such as
disease classification, compound MoA classification, compound activity assessment, etc. There
are many ways to develop a representation, from labor-intensive and hand-tuned to completely
automated unsupervised, the latter of which uses ML and continues to improve and generalize,
thus freeing up researchers and allowing for larger-scale analyses. There are different
approaches to generating representations using ML, such as fully and weakly supervised
learning, transfer learning, and unsupervised learning using contrast image approaches,
morphology approaches, and full cellular characterization approaches, etc. Each combination
has different strengths and weaknesses in relation to the task being undertaken.

Work recently published out of ETH (Perakis, et al., 2021) demonstrated the use of a novel
unsupervised contrastive learning approach to cellular phenotyping, which in turn used this
representation to predict compound MoA with superior performance to most previous ML-based
methods. During the recent COVID-19 pandemic, AAIH member company Recursion
Pharmaceuticals collaborated with the Broad Institute of MIT and Harvard using their version of
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Cell Painting microscopy and proprietary ML-based Phenomic Platform (Cuccarese, et al.,
2020). The team examined a diverse set of human cells involved in immune response under
various immune stimuli very rapidly and in an automated fashion. Within 28 days, they identified
two relevant “phenoprints,” disease-specific vector fingerprints of cellular morphology, in the
context of TNF-ꞵ and TNF-⍺ signaling. They demonstrated that a handful of drugs modulate
the infection model (e.g., remdesivir), the cytokine storm model (PI3K inhibitors) or both (JAK
inhibitors), prior to confirmatory clinical trial results becoming available.

To give one final example of drug program initiation using human data and ML, we will examine
the use of ML to identify and validate new disease targets using longitudinal and multi-omics
patient data. One advantage of this approach to target ID is that with the new target comes a
clear disease association and addressable patient population hypothesis. Of the three
illustrations of program initiation—knowledge graphs, cellular phenotyping, and real-world data
(RWD) and multi-omic analysis—the latter is the most nascent owing to the difficulty of
collecting and curating high-quality longitudinal patient and molecular data, and the maturity of
the ML methods underlying the analyses. Yet, the virtue of generating explanatory hypotheses
lends promise to improve the overall probability of technical and regulatory success (PTRS).

Over the past twenty years, we have seen orders of magnitude drop in the cost of genomic
sequencing, the emergence of other relatively low-cost omics measurement techniques, and a
rise in both the awareness of the importance and the technical capability to collect RWD.
Genomic analyses alone have led to a wealth of knowledge about disease and have contributed
significantly to the development of drugs over the past twenty years by helping to identify novel
targets, novel target combinations, and risk factors. In the space of target ID, genetic
association by whole-exome sequencing and whole-genome sequencing has been the primary
tool. One shortcoming until recently was the limited phenotypes available for association. Most
studies were confined to publicly available datasets, and either literature surveys or expensive
observational studies, both of which were typically focused on well-defined and previously
accepted disease phenotypes. Over the last few years, several high-quality relatively large
patient-based datasets have become available, such as, All of Us, UK Biobank, FinnGen, and
Maccabitech. These open the ability to develop better phenotype definitions beyond diagnostic
codes, to achieve better statistical power, and to help deconvolve genomic signals.

While datasets such as these are welcome, one must still be cognizant of shortcomings and
pitfalls. Each of these larger datasets has focused on either longitudinal patient data or genomic
data with varying amounts of the other, as well as some additional multi-omics data included.
Due to the diversity of data, data sources, and purposes for which the data were
generated/collected, one must be careful to understand the origins and context of the data and
its implications on conclusions and analytics drawn from them. Davitte et al. (Davitte,
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Stott-Miller, Ehm, Cummington, & Reynolds, 2022) review many of the challenges and promises
of these datasets. Nevertheless, these and other population-scale datasets hold a lot of promise
and value for the development of more precise phenotypes.

In the area of target ID, improved phenotypes can be as simple as moving beyond diagnostic
codes to using a quantitative phenotype, such as BMI. More powerful, however, would be to
leverage the longitudinal nature of these datasets to describe more complex phenotypes that
capture an entire (or a large portion of the) patient journey and disease progression. To do this,
one can use an ML approach to encoding the longitudinal data, including labs, diagnostic codes,
drugs, etc. Xie et al. (Xie, et al., 2022) have developed a good summary of the different methods
and the general challenges associated with temporal embedding of EHR data. Using an
unsupervised deep learning-based method on longitudinal patient data, AAIH member company
Valo Health has shown, in a previous S-4 filing (Khosla Ventures Acquisition Co., 2021), the
ability to develop higher precision phenotypes in Parkinson’s disease with some sub-groups
showing potentially useful biomarkers. When using more precise phenotypes one must,
however, ensure that the results have sufficient statistical significance. We expect to see more
and more validated examples of novel phenotypic classifications as data sets that encompass
clinical attributes, molecular sequencing and other physiological measurements become more
widely available.

Translational Research and Biomarkers Discovery

While a great deal of attention has been paid to advancements in drug target ID and for new
molecule design, translation and clinical drug development are arenas where ML has begun to
make inroads and promises to become an essential tool for the discovery of clinical biomarkers
and development of diagnostic devices.

A biomarker is any characteristic that is objectively measured and evaluated as an indicator of
normal biological processes, pathogenic processes, or pharmacologic responses to a
therapeutic intervention (Biomarkers Definitions Working Group, 2001). Biomarkers come in
many forms and have numerous applications, such as evaluating whether a patient is sick or
healthy, indicating the degree of risk posed by a disease or genetic predisposition, and even
predicting the outcome of therapeutic interventions. This last use case, the predictive biomarker,
is the core element of precision medicine, an approach to drug development and patient care
that aims to match every patient to an optimal intervention based on some measurable
characteristic(s) of that patient’s disease/biology. Parker and colleagues (2021) showed that
over the previous 20 years, clinical trials in the top 5 cancer indications that included biomarkers
in the trial design were 5 – 12x more likely to meet their endpoints and advance the drug to the
next phase (Parker, et al., 2021).
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Predictive biomarkers may be deployed at the stage of translational R&D when drug candidates
move from preclinical experimentation into patient trials. These biomarkers may be deployed
within clinical development as a clinical trial assay to select patients based on their likelihood of
response to a drug. They may also be further developed into diagnostic tests—e.g., a lab
developed test (LDT), or a companion diagnostic (CDx)—which must gain regulatory approval
and are used to guide treatment decisions of approved or investigational medicines.

The number of FDA cleared diagnostic devices (not necessarily CDx, but some form of
regulated diagnostic) that rely on an AI algorithm has risen sharply in the past handful of years
(Figure 1: FDA Cleared AI-Enabled Devices, by Year). The reasons for this increase may be
attributed to the tremendous growth in available data, both imaging and molecular, as well as to
the commoditization of once exotic ML algorithms. Especially in the case of image analysis,
biomedical innovators have been able to stand on the shoulders of tech giants who
mainstreamed powerful tools for pattern detection and classification from images, co-opting
these approaches for the analysis of radiology and pathology data. Two notable examples of ML
powered, image-based biomarkers include Paige.ai’s FullFocus platform (FDA cleared, CE-IVD)
for primary diagnosis of prostate cancer, and AAIH member company, Owkin’s solutions for
breast cancer and colorectal cancer risk assessment, which have CE-IVD marks.

Figure 1: FDA Cleared AI-Enabled Devices, by Year (US FDA, 2022)
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Another motivation for adopting ML in the cause of biomarker development is that human
biology is complex, and that to date, virtually all approved companion diagnostics measure only
one (or maybe 2-3) molecules (Table 1: Unique targets of approved CDx devices…). These
devices are all in cancer. To move away from the low hanging fruit, and to expand the utility of
CDx to other therapeutic areas, diagnostics developers are more and more interested in
capturing biological complexity within their device algorithms. ML is especially adept at detecting
complex patterns in data and reducing these to a practical subset of features to measure.

One example of a diagnostic algorithm that has purposefully embraced biological complexity is
the XernaTM TME Panel, notable for its novelty as a transcriptomics-based assay with an
artificial neural network patient classifier. The Xerna TME Panel was built by OncXerna
Therapeutics in collaboration with AAIH member company, Genialis, and currently is being
developed into a CDx by Qiagen. While most CDx measure one gene, this panel measures
about 100, and can predict therapeutic response to multiple drug modalities across a wide
range of solid tumor types. Thus is the power of ML, to go from a single measurement for a
single drug in a single indication, to enabling a diagnostic platform that can accommodate high
throughput measurements and be applied across a broad spectrum of clinical contexts and
indications.

Table 1: Unique targets of approved CDx devices (US FDA, 2022)

Though ML seems a natural fit for biomarker development, its adoption and implementation is
not without risk. Clinical datasets typically are small, too small for adequate ML training. Further,
they are infamous for harboring bias and batch effect, arising from patient attributes like medical
history, age, sex, ethnic background, and socioeconomic status; from technical factors like
tissue handling and data generation; and from human decisions about which patients to collect
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data from in the first place. If an algorithm learns these biases, the biomarker or diagnostic
device will not work in the real world. There’s also regulatory risk, in that certain data modalities
and algorithm types are relatively new to bodies like the FDA and EMA. However, these groups
have shown a keen interest in learning more and establishing guidelines for the adoption of AI in
clinical applications. The FDA has released guidance, for example, on Good Machine Learning
Practice (US FDA, 2021) and AI in Software as a Medical Device (US FDA, 2021).

As more AI-enabled devices gain clearance, and more complex biomarkers earn clinical
validation, ML will become a mainstay of drug development and clinical decision making.

Clinical Development

Beyond devices and biomarkers however, the process of assessing the safety and efficacy of
new therapies in humans remains one of the most challenging parts of drug discovery and
development. For example, Wong et al find that Phase 1, 2, and 3 clinical trials have median
durations of 1.6, 2.9, and 3.8 years and estimated probabilities of success of 66.4%, 58.3%, and
59%, respectively (Wong, Siah, & Lo, 2019). As a result, new drugs entering clinical trials are
facing an 8-year long journey with less than a 14% chance of making it to approval.
It is widely recognized that pharmaceutical and biotechnology companies face significant risk,
long timelines, and high costs in clinical drug development, but there are also various ways in
which current approaches to clinical trials let patients down. Participation in a clinical trial may
place substantial burden on the patient and/or caregiver, particularly if participants must
frequently travel to clinical trial sites. Patients are often hesitant to participate in randomized
trials in which half of the participants are assigned to a control group. And clinical trials are often
run in homogeneous patient populations leading to the exclusion of some patients and concerns
about the generalizability of trial findings.

Several recent technological developments have paved the way for application of AI/ML to
clinical trials. First, large databases of longitudinal patient data from control arms of historical
clinical trials, observational and natural history studies, and real-world sources have become
widely available. Second, high dimensional biomarkers from technologies such as imaging, next
generation sequencing, and wearable devices provide large amounts of patient-level
information, as mentioned above. And third, recently developed methods using deep neural
networks allow one to create sophisticated models that can fully utilize all this patient data, also
mentioned above.There are various ways in which these advances in ML will lead to
improvements in the clinical development process for both sponsors and trial participants. For
example, AI-assisted digital or remote assessments can lower costs for trial sponsors while
simultaneously reducing the number of visits trial participants need to make to clinical sites for
evaluation. In addition, analyses of real-world data collected outside of clinical trials can be used
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to assess the comparative effectiveness and safety of treatments once they are on the market.
However, for brevity, we will focus on two areas: novel clinical trial designs that use ML to
improve efficiency and using causal ML to improve the generalizability of clinical trial results.

Clinical trials are designed to estimate the average causal effect of a new treatment on some
predefined outcomes in comparison to an existing treatment within some patient population. In
theory, it should be possible to develop an AI-system that can predict how an individual patient
will respond to a completely novel therapy, but this lies beyond the capabilities of today’s ML
algorithms with existing data. That said, there are several applications of ML in clinical trials that
leverage data from patients receiving existing treatments.

The US FDA requires “substantial evidence” from “adequate and well-controlled investigations”
to grant approval for a new drug. Typically, this evidence comes from at least one, but often
more, randomized controlled trials (RCTs) with concurrent placebo control. The ability to detect
an average treatment effect in such RCTs is limited due to variability in patient outcomes, such
that large sample sizes are often required to achieve desired statistical power. ML algorithms
trained on historical data can learn to accurately predict potential outcomes for individual
participants in a clinical trial—e.g., how would this patient respond if s/he were assigned to the
control group?—and these predicted potential outcomes can be leveraged within RCTs enabling
one to achieve higher power with smaller sample sizes. Some methods that use participants’
digital twins to predict their potential outcomes and incorporate them into the analyses preserve
key statistical properties of RCTs such as the type-I error rate. In fact, the European Medicines
Agency has qualified one such method for use in phase II and III clinical trials with continuous
outcomes (European Medicines Agency, 2022) that was developed by AAIH member
Unlearn.AI. Alternatively, predicted outcomes could be used as part of the patient selection
process; however, this further restricts the eligible trial population which may lead to
complications in reaching enrollment targets and ensuring generalizability of trial results.

Although RCTs remain the gold standard form of evidence on the efficacy of new drugs, there
are some circumstances in which it is impractical or unethical to run a randomized trial with a
concurrent control. In such cases, it may be possible to instead perform a single arm trial using
an external control group. To address the increasing interest in trials with external control arms
from clinical trial sponsors, FDA recently published a draft guidance on “Considerations for the
Design and Conduct of Externally Controlled Trials for Drug and Biological Products” (US FDA,
2023). As discussed in the draft guidance from FDA, the validity of a trial with an external
control group depends on how well the external control population matches the population in the
trial. In fact, FDA states clearly that “[i]n many situations, however, the likelihood of credibly
demonstrating the effectiveness of a drug of interest with an external control is low”.
Nevertheless, AI-based methods may be able to mitigate some of the drawbacks associated
with external controls by selecting subsets of patients from external populations to create
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so-called synthetic control groups that more closely match trial populations by using propensity
score matching or inverse probability of treatment weighting (IPTW) (Thorlund et al, 2020).
Erdafitinib, marketed as Balversa by Janssen Pharmaceuticals, an AAIH member, provides one
example of a successful use of synthetic control methods as it was granted accelerated
approval by US FDA for patients with a genetically defined form of metastatic bladder cancer in
April 2019 based on a single arm clinical trial using an external control and IPTW, subject to a
confirmatory trial (US FDA, 2019).

Another area in which AI/ML may have an impact on drug development is on improving
generalizability of clinical trial results. For a variety of technical and social reasons, clinical trials
tend to draw from homogeneous populations that may not accurately reflect the broader
population in which new treatments will actually be used. For example, clinical trials used to
determine efficacy often exclude patients with multiple comorbidities, such that clinical
researchers distinguish between the efficacy of a treatment under ideal circumstances and its
effectiveness under real world conditions (Singal et al, 2014). Methods from causal inference
and ML can mitigate these problems by allowing researchers to estimate conditional average
treatment effects, or to combine randomized and observational study data, such that estimates
of treatment efficacy can be transported across diverse populations, although this is an active
area of methodological research (Dahabreh et al, 2020). For example, a recent study used
IPTW to examine the generalizability of randomized trials on dual antiplatelet therapy to real
world populations and found that the clinical trials likely overestimated benefits and
underestimated harms due to prolonged treatment duration in populations representative of
clinical practice (Butala et al, 2022). Although regulatory approval decisions typically rely on
efficacy and safety data rather than estimates of real world effectiveness, studies that use
statistical and ML techniques to generalize findings from RCTs in homogeneous populations will
likely be a critical component of attempts to move towards a value-based drug pricing model.

To an extent, the adoption of AI/ML within clinical development has lagged other areas in drug
discovery such as target identification and generative chemistry. Obviously, these application
areas have substantially different regulatory landscapes. One is relatively free to explore new
technologies during pre-clinical development without much regulatory involvement, but
regulatory agencies are a key stakeholder for the application of any new technology within
clinical development. Ultimately, the question of whether applications of AI/ML within clinical
development are suitable for supporting regulatory approval decisions depends on a detailed
assessment of the risks associated with their context of use.

Conclusion
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In conclusion, we at the AAIH are on the frontiers of applying AI/ML to the discovery and
development of new medicines and we hope we have shown you some of the ways in which our
companies and other companies in this field are using AI/ML to bring medicines to patients that
desperately need them faster and with higher probability of success. We believe that AI/ML is
the future of medicine.
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